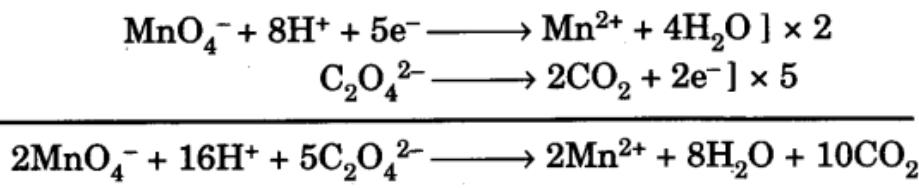


Determine the Percentage Composition Of a Mixture Of


Sodium Oxalate $\left[\begin{array}{c} \text{COONa} \\ | \\ \text{COONa} \end{array} \right]$ & Oxalic Acid $\left[\begin{array}{c} \text{COOH} \\ | \\ \text{COOH} \end{array} \right] \cdot 2\text{H}_2\text{O}$
Provided N/20 KMnO_4

Chemical Equations

Molecular Equations

Ionic Equations

Theory

Both oxalic acid and sodium oxalate can be titrated against N/20 KMnO_4 since both of them are reducing agents.

So normality (N_2) of the solution will be due to both of them. From the combined normality (N_2), the composition of each can be calculated.

Indicator

KMnO_4 is a self-indicator.

End Point

Colourless to permanent pink (KMnO_4 in burette).

Procedure

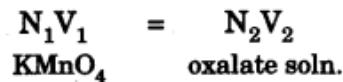
1. Rinse and fill the burette with the N/20 KMnO_4 , solution.

2. Weigh exactly 1.0 g of the given mixture of oxalic acid and sodium oxalate and dissolve in water to prepare exactly 250 ml of solution using a 250 ml measuring flask. Rinse the pipette with the prepared oxalate solution and pipette out 20.0 ml of it in a washed titration flask.
3. Add one test-tube (~ 20 ml) full of dilute sulphuric acid (~ 4 N) to the solution in titration flask.
4. Note the initial reading of the burette.
5. Heat the solution of titration flask to 60-70°C and run down KMnO_4 solution from the burette till a permanent light pink colour is just imparted to the solution in the titration flask.
6. Note the final reading of the burette.
7. Repeat the above steps 4-5 times to get three concordant readings.

Observations

Normality of KMnO_4 solution = 1/20

Volume of oxalate solution taken for each titration = 20.0 ml.


S. No.	<i>Initial reading of the burette</i>	<i>Final reading of the burette</i>	<i>Volume of the KMnO_4 solution used</i>
1.	—	—	— ml
2.	—	—	— ml
3.	—	—	— ml
4.	—	—	— ml

Concordant volume = x ml (say).

Calculations

x ml of N/20 KMnO_4 solution are equivalent to 20 ml of the given oxalate solution.

Applying normality equation,

$$\frac{1}{20} \times x = N_2 \times 20$$

$$\therefore \text{Normality of oxalate solution, } N_2 = \frac{x}{400}$$

$\frac{x}{400}$ is the total normality due to oxalic acid and sodium oxalate.

Suppose, strength of oxalic acid = a g/litre

\therefore Strength of sodium oxalate = $(4 - a)$ g/litre

$$\text{Normality due to oxalic acid, } N_{\text{oxalic acid}} = \frac{a}{\text{Eq. mass of oxalic acid}} = \frac{a}{63}$$

$$\text{Normality due to sod. oxalate, } N_{\text{sod. oxalate}} = \frac{4 - a}{\text{Eq. mass of sod. oxalate}} = \frac{4 - a}{67}$$

$$\therefore \text{Total normality of the oxalate solution} = N_{\text{oxalic acid}} + N_{\text{sod. oxalate}}$$

$$\frac{x}{400} = \frac{a}{63} + \frac{4 - a}{67}$$

From this equation, 'a' can be calculated. Knowing 'a', the percentage composition of the mixture can be calculated.

$$\% \text{ of oxalic acid} = \frac{a}{4} \times 100 = X \text{ (say)}$$

$$\% \text{ of sod. oxalate} = \frac{4 - a}{4} \times 100 = Y \text{ (say).}$$

Instructions for the Preparation of Solutions

Provide the following solutions :

1. KMnO_4 solution (1.58 g/litre)
2. A mixture of oxalic acid and sodium oxalate
3. 4N H_2SO_4